

Now in Moto, we have $Hom((x,p,m),(y,q,n)) = q \circ Corr$, $(X,Y) \circ p$, and the space of $correspondences$ $Corr$ $(X_1, y) = C^{a*} (X_1 \times Y, \mathbb{Q})$, extended linearly. Since morphisms between motives are themselves cycles, we make the following definition:

 $Def: A$ morphism $f: M \rightarrow N$ in $Mf_{\infty}(k)$ is called smesh-nilpotent if for some $n \geq 1$, the associated $correspondence$ is smash-nilpotent w.r.t. \sim (may not be \sim a!).

This means that if Γ_f is the correspondence for f, $I_f^k \times \cdots \times I_f^c \cup O$ in $C_\infty (X^k \times Y^n)_{\mathbf{Q}}$. This is exactly the same as $f^* = f x \cdot x f$ vanishing in the nth tensor product of motives. We have the following obvious lemmen:

 $\frac{1}{2}$ Lemma: Let f , $g : M \rightarrow N$ be smash-nilpotent. Then so are fig, f -g

 $\frac{Proset: \begin{bmatrix} 1 & 1 \end{bmatrix}}{f}$ be the associated correspondences. Then one checks that

 $\left(\begin{array}{c}\n\mu \\
\mu\n\end{array}\right)^n = \sum \left(\begin{array}{c}\n\mu \\
\mu\n\end{array}\right) \left(\begin{array}{c}\n\mu \\
\mu\n\end{array}\right)^n$

which can be mude ~0 for sufficiently largen. The other is similar 2

While this result was simple, the real focus of this detour is the following:

 $\frac{1}{2}$ Let f: $M \rightarrow M$ be a smash-nilpotent morphism in Motala). Then $f^{(n)}$ =fo-cof =0. That is, smush-nilpotence \Rightarrow nilpotence.

This in turn is implied by

 $\frac{p_{rop}}{p}$: Let $f: M \rightarrow N$ in $M_0t_w(k)$ be smesh nilpotent of order n, and let $g_i: N \rightarrow N$, $i=1,\ldots,n-1$ be morphisms. Then $f \circ g_{n-1} \circ f \cdots f \circ g_1 \circ f$ vanishes.

Clearly by taking N = M, g_i =id we recover the theorem above, so now we prove
the proposition the proposition.

 $f^{02} = 0$
Denote to Proof To illustrate how this is proven consider just fogof Denote their correspondences by 17 , 17 g. Then by definition, if $M=(x,p,-)$ and $N=(y,q,-)$, $f=g\circ f^*_{g}\circ p$ and $g_{i}=p\circ f^*_{g}\circ g$.
Hence fog, = $g\circ f_{g}\circ p\circ f_{g}^*$, og ϵ Corr (x,x). If we amit the projectors for a moment, and set π_{ijk} the projections from XxYxXxX, sij the projections from XxYxX, and fij projections from XxXxY, then consider the cycles

 $x = \pi_{123}^* (s_{12}^* \Gamma_f \cdot s_{23}^* \Gamma) = ((\Gamma_f \times x) \cdot (x \times \Gamma_g)) \times y) \in C_{-}(x \times y \times x \times y)$ $\beta = \rho_{23}^* \Gamma_f$ $\left(= \times \times \Gamma_f \right) \in C_{\infty}$ $\left(\times \times \times \times \right)$.

Now $\alpha \cdot \pi_{134} (\beta) = (\Gamma_f \times \times \times) \cdot (X \times \Gamma_g \times Y) \cdot (X \times Y \times 1'_f) = (I_f \times I'_f) \cdot (X \times I'_g \times Y) = O$ as $\int_f^1 X I'_f = O$

<u>Surjections in Motalk)</u>

Let us work with chow motives for now

 $Def:$ Let $f: M \rightarrow N$ be a morphism of motives. Then f is surjective if for all smooth projective varieties Z the induced map $CH(M@ch(Z))_{\text{co}} \rightarrow CH(M@ch(Z))_{\text{Q}}$ is surjective.

Let me remind you that for M=(X,p,m), CHⁱ(M) = Im(px:CH^{itm}(X)_Q -> CH^{itm}(X)_Q) = Hom_{mat} (L^{oi}, M),
Il = (a) A) $L = (S_{pec} k, id, -1)$.

Example: Let $\phi: \times \rightarrow \times$ be a generically finite morphism of degree r. Then on motives, we have morphisms ϕ_x + ϕ^* s.t. $\phi_x \circ \phi^* = r$ id. => surjective.

Example: Consider the inverse of a blow-up $X \xrightarrow{\phi} Y$ = $Bl_P X$ of a sm. proj. X at a point. Then $CH'(Y) = CH'(X) \oplus \mathbb{Z}[E]$, and $E \notin \mathcal{I}m \phi_{\mathcal{A}} \Rightarrow$ not surjective. in general dominant morplisms are surjective, but not dominant rational maps.

Lemma: Let $f: (x, p, m) \rightarrow (y, q, n)$ be a morphism. Then TFAE: $i)$ f is surjective, $ii)$ \exists a right inverse to f , iii) $g = f \circ s$ for some se Corr $^o(y, x)$.

Theorem: Let $f: M \to N$ be a surjective morphism of motives. If M is f.d., so is N.

 $Proof:$

 $Step X$: Suppose M is evenly (oddly) f.d. Then the above lemmer guarantees us a right inverse, $y : N \to M$, such that fog = id_N. This induces a decomposition $M = N \oplus K \to N$ and K are evenly $(oddly)$ f.d.

 $St_{ep}\mathbb{I}:$ Write $M = M_{+} \oplus M_{-}$. One needs to show existence of $N = N_{+} \oplus N_{-}$ such that $M_t \rightarrow N_t$ and $M_t \rightarrow N$. Since the degree doesn't matter in the definition, we may take degrees zero, and regard f as a correspondence. Using the above lemmer and M's decomposition, we get two endomorphisms $q'_\pm : N \to N$ (M = (x,p,o), N = (y,g,0)).

 $Step1II:$ Show that there is a polynomial $P(t)$ such that $P(q_t)$ ane (almost) projectors. We set $q_{\pm} = q_{\pm}^{k} \circ r_{\pm}$, $r_{+} = P^{k}(q_{+}^{l})$, $r_{-} = P(q_{-}^{l})$.

 $St_{\epsilon_{\rho}}$ $\underline{\pi}$: Show M_{\pm} surjects onto (y, g_{\pm}, o) . \boxtimes

This implies the following

Corollary: 1) If $f: X \rightarrow Y$ is a dominant morphism with ch(X) f.d., then ch(Y) is also.
2) M $\oplus N$ f.d. \Rightarrow M and N are f.d. $2)$ M \oplus N $f.d.$ \Rightarrow M and N are f.d.
 $2)$ A b b b c l c l l l 3) A motive which is dominated by a morphism from a finite product of curves is f.d. In particula,
+ time is a particular integration of the came of the curve is find that the curve is find. the motive of an abelian variety is $f.d.$ 4) Every summand of a tensor product of curves is f.d. They form a full tensor subcategory.

