From last time, we have two questions. First, why is the dimension of a motive well defined? Second, how does it behave under &, @? We answer the 2nd first. Direct Sum Prop: Let M, N be motives. Then if M & N are evenly (oddly) f.d., then so is MON. If M, N are f.d., then dim M@N ≤ dim M + dim N. Proof: Suppose dim, M=m, dim_N=n. There we aim to show 1 (MON) = O. By a direct computation shows: $\Lambda^{\mathsf{ntwitt}}(\mathcal{M} \oplus \mathcal{N}) \cong \bigoplus \Lambda^{\mathsf{r}} \mathcal{M} \otimes \Lambda^{\mathsf{s}} \mathcal{N} = \mathsf{O}$ rts = ntmt i by an index count. An identical argument proves the converse, A Tensor Product Def: For λ a partition of n, M = (X, P, m), define $\Pi_{X} M = (X^{n}, d_{X}(M) \circ p^{n}, nm)$. Lemma (Vanishing): Let g=n and λ a partition of g. Then 1) $S_{ym}^{M'}(M) = 0 + \lambda_i > n \Rightarrow \pi_{\lambda} M = 0$ 2) $\Lambda^{n+1}(M) = O + \lambda_{n+1} \neq 0 \Rightarrow \pi_{\lambda} M = 0$. Let T be the Young diagram according to λ . Define $R_{\lambda}(T) = \{\sigma \in S_n \mid \sigma \text{ permutes only }\}, C_{\lambda}(T) = \{\sigma \in S_n \mid \sigma \text{ or elements in rows}\},$ Now define $a_{\lambda}(\tau) = \sum_{\sigma \in \mathcal{R}_{\lambda}(\tau)} \sigma$, $b_{\lambda}(\tau) = \sum_{\sigma \in \mathcal{C}_{\lambda}(\tau)} \operatorname{sign}(\sigma) \sigma$, $C_{\lambda}(\tau) = a_{\lambda}(\tau) b_{\lambda}(\tau)$. Recall from Rep. Theory: 1) V & Vector, and Sn VOn naturally. Then Im (a, (T)) = Sym² (V) O ... O Sym² (V) and $I_{m}(b_{\lambda}(\tau)) = \Lambda^{\mu} \vee \otimes \cdots \otimes \Lambda^{\mu} \vee.$ 2) $C_{\lambda}(\tau) \circ C_{\lambda}(\tau) = \gamma_{\lambda}(\tau) C_{\lambda}(\tau), \text{ for } \gamma_{\lambda}(\tau) \neq 0.$ 3) Rg CX(T) is an irred. Rg-module. 4) $R_{s_n} C_k(\tau) \cong R_{s_n} C_m(\tau) <=> \lambda = \mu.$ 5) e, is a linear combination of the Cx(T). 6) $e_{(i_1,\dots,i)} \cdot (e_\lambda \otimes e_{j_k}) = \begin{cases} 0 & i \neq \lambda \neq j_k^T \\ e_{(i_1,\dots,i)} & else. \end{cases}$ Now we have the following theorem : Thm: Let M, N be f.d. motives. Then dim MON & dim M. dim N. Proof: See Murre 12, have the following goal: We had defined dim M = dim, M+ + dim_M_ for Now we some decomposition M= M+ OM_, yet we said nothing about this decomposition. We now aim to show it's well-defined.

Before	we	do	this	however,	lets	take	a	brief	detour	to	setup	some	tools.	Recall	that	f
														Z~⊗0		
on X	for	۷ 5 ठ	me	n21.												

Now in Motr, we have $Hom((X,p,m), (Y,q,n)) = q \circ Corr^{n-m}(X,Y) \circ p$, and the space of correspondences $Corr^{n}(X,Y) = C^{d+r}(X,XY; Q)$, extended linearly. Since morphisms between motives are then selves cycles, we make the following definition:

Det: A morphism $f: M \rightarrow N$ in $Mof_{n}(k)$ is called smash-nilpotent if for some $n \ge 1$, the associated correspondence is smash-nilpotent w.r.t. ~ (may not be ~a!).

This means that if Γ_f is the correspondence for f, $\Gamma_f \times \dots \times \Gamma_f \wedge O$ in $C_{\mathcal{N}}(X^n \times Y^n)_{O}$. This is exactly the same as $f^{\otimes n} = f \times \dots \times f$ vanishing in the nth tensor product of motives. We have the following obvious lemma:

Lemma: Let $f, g: M \rightarrow N$ be smash-nilpotent. Then so are ftg, f-g.

Pressif: Let If, If be the associated correspondences. Then one checks that

 $\left(\Gamma_{f}+\Gamma_{g}\right)^{n}=\sum_{r}\binom{n}{r}\Gamma_{f}^{r}\times\Gamma_{g}^{n-r}$

which can be made ~0 for sufficiently large n. The other is similar. 13

While this result was simple, the real focus of this detour is the following:

Theorem: Let $f: M \rightarrow M$ be a smash-nilpotent morphism in $Mot_{n}(k)$. Then $f^{(n)} = fo \cdots o f = 0$. That is, smuch-nilpotence \Rightarrow nilpotence.

This in turn is implied by

Prop: Let f: $M \rightarrow N$ in Mot_n(k) be small nilpotent of order n, and let gi: $N \rightarrow M$, ill,..., n-1 be morphisms. Thus fog_n-, of ---- fog, of vanishes.

Clearly by taking N=M, gi=id we recover the theorem above, so now we prove the proposition.

<u>Proof</u>: To illustrate how this is proven, consider just fog, of. Denote their correspondences by Γ_{f} , Γ_{g} . Then by definition, if M=(X,p,-) and N=(Y,g,-), $f=g\circ\Gamma_{f}\circ p$ and $g_{i}=p\circ\Gamma_{g}\circ q$. Hence fog, = $g\circ\Gamma_{f}\circ p\circ\Gamma_{g}\circ q\in Corr(X,X)$. If we amit the projectors for a moment, and set T_{ijk} the projections from $X \times Y \times X \times Y$, S_{ij} the projections from $X \times Y \times X$, and f_{ij} projections from $X \times X \times Y$, then consider the cycles:

 $\alpha = \pi_{123} \left(s_{12}^{*} \Gamma_{f} \cdot s_{23}^{*} \Gamma \right) \left(= \left(\left(\Gamma_{f} \times X \right) \cdot \left(X \times \Gamma_{f} \right) \right) \times Y \right) \in \mathcal{C}_{\sim} \left(X \times Y \times X \times Y \right)$ $\beta = \rho_{23}^{*} \Gamma_{f} \left(= X \times \Gamma_{f} \right) \in \mathcal{C}_{\sim} \left(X \times X \times Y \right).$

 $\mathcal{N}_{0w} \quad \alpha \cdot \pi_{134}(\beta) = (\Gamma_{f} \times X \times Y) \cdot (X \times \Gamma_{g} \times Y) \cdot (X \times Y \times \Gamma_{f}) = (\Gamma_{f} \times \Gamma_{f}) \cdot (X \times \Gamma_{g} \times Y) = 0 \quad as \quad \Gamma_{f} \times \Gamma_{f} = 0.$

Now use the projection formula:
$$O = [\pi_{SN}]_{0} (d : \pi_{SN}^{-1}(p)) = (\pi_{SN})_{N} d : P and orde that
since $\pi_{SN} = S_{0} \times id_{N}$, $(\pi_{SN})_{N}(d) = \pi_{SN}^{-1}(\frac{1}{2}\cdot f_{2}) \times Y$. Thus an $X \times X \times Y_{2}$ we have:
 $(\pi_{TN})_{0} d : P = \{(f_{2}\cdot f_{2}) \times Y_{2}^{-1} (X \times f_{2}^{-1}) = 0$.
finally, apply $(3_{2})_{0}$ to the above $(\pi_{SN} = S_{15} \times id_{N})$ to get $f_{2} \circ f_{2} \circ f_{2} = 0$.
Also, let us tore look to the finite dimensionality of matrices, one begins with a
consider result.
Prove that the two field metrics of differed parity (M analy, M addly for complex), and
f: $M \to N$. Thus f is small milphole, $f^{SN} = 0$ if $\lambda \times dm M \cdot dm M$.
Bade Set we done M_{1} and $\lambda > m$ and $\lambda > m$ in . Let $\lambda_{1,j,k}$ be two purties of λ_{1} and
 $f^{SN} \to M^{SN} - f_{N}$ is a dm M_{2} mean. Let $\lambda_{1,j,k}$ be two purties of λ_{1} and
 $f^{SN} \to M^{SN} - f_{N}$ is a dm M_{2} mean. Let $\lambda_{2,j,k}$ be two purties of λ_{1} and
 $f^{SN} \to M^{SN} - f_{N}$ is a dm M_{2} mean into the source is grand to $f^{SN} - f_{N} + f_{N}$.
Since $\sigma_{1} \circ \sigma_{1} \to 0$ is $\lambda \neq \mu_{1}$ and $\lambda > m$ is a diar M_{2} mean into the source is σ_{2} and $\lambda \neq \mu_{2}$.
Hence the compaction the matrix so the above compaction vanishes for $\lambda = must and \lambda \neq \mu_{2}$.
Hence the compact to the $\lambda \neq \mu_{2}$ and $m = 0$ any $Sym^{SN} \to 0$. Thus the vanishing format
 $f^{SN} d_{1} d_{2} = \{O \to \lambda \neq \mu_{2} - a_{2} S_{2} M^{SN} + M^{-2} O_{2} S_{2} M^{-2} M$$$

Surjections in Mota (k)

Let us work with chow motives for now.

<u>Def</u>: Let $f: M \rightarrow N$ be a morphism of motives. Then f is surjective if for all smooth projective varieties Z the induced map $CH(M \otimes ch(Z))_{60} \rightarrow CH(N \otimes ch(Z))_{Q}$ is surjective.

Let me remind you that for M=(X,P,m), $CH^{i}(M) = Im(P_{\#}:CH^{i+m}(X)_{\otimes} \longrightarrow CH^{i+m}(X)_{\otimes}) \cong Hom_{Mot}(\mathbb{R}^{i}, M)$, $\mathbb{L} = (Spec k, id, -1).$

Example: Let $\phi: X \rightarrow Y$ be a generically finite morphism of degree r. Then on motives, we have morphisms $\phi_X \neq \phi^X$ s.t. $\phi_X \circ \phi^X = r$ id. \Rightarrow surjective.

<u>Example</u>: Consider the inverse of a blow-up $X \xrightarrow{\phi} Y = Bl_p X$ of a sm. proj. X at a point. Then $CH'(Y) = CH'(X) \oplus \mathbb{Z}[E]$, and $E \notin Im \phi_X \Rightarrow$ not surjective. In general dominant morphisms are surjective, but not dominant rational maps.

Lemma: Let f: (X, p, m) → (Y, g, n) be a morphism. Then TFAE: i) f is surjective, ii) ∃ a right inverse to f, iii) g = fos for some se Corr°(Y, X).

<u>Theorem:</u> Let $f: M \rightarrow N$ be a surjective morphism of motives. If M is f.d., so is N.

<u>Proof</u>:

<u>Step I</u>: Suppose M is evenly (oddly) f.d. then the above lemme guarantees us a right inverse, $g: N \rightarrow M$, such that fog = id_N. This induces a decomposition $M = N \oplus K \Rightarrow N$ and K are evenly (oddly) f.d.

Step II: Write $M = M_{+} \oplus M_{-}$. One needs to show existence of $N = N_{+} \oplus N_{-}$ such that $M_{+} \longrightarrow N_{+}$ and $M_{-} \longrightarrow N_{-}$. Since the degree doesn't matter in the definition, we may take degrees zero, and regard f as a correspondence. Using the above lemme and M's decomposition, we get two endomorphisms $g'_{+}: N \rightarrow N$ (M = (X, P, O), N = (Y, g, O)).

<u>Step III:</u> Show that there is a polynomial P(t) such that $P(g'_{\pm})$ are (almost) projectors. We set $g_{\pm} = g'_{\pm} \circ r_{\pm}$, $r_{\pm} = P^{k}(g'_{\pm})$, $r_{\pm} = P(g'_{\pm})$.

<u>Step TU:</u> Show Mt surjects onto (Y, gt, 0).

This implies the following:

Corollary:
1) If f:X → Y is a dominant morphism with ch(X) f.d., then ch(Y) is also.
2) M ⊕ N f.d. ⇒ M and N are f.d.
3) A motive which is dominated by a morphism from a finite product of curves is f.d. In particular the motive of an abelian variety is f.d.
4) Every summand of a tensor product of curves is f.d. They form a full tensor subcategory.

Now we have the following theorem:
Then: Let $M = (X, P, m)$ and $f: M \rightarrow M$ be a morphism of Chow motives. Assume M is evenly (oddly) finite dimensional. We have: 1) There exists a nonzero polynomial $g(t) \in \mathbb{O}[t]$ of degree $n-1$ with $g(f)=0$. 2) If $f \sim num 0$, then $q_1(t) = t^{n-1}$.
Proof omitted.
Applications and Conjectures
We have functors $Mot_{ret} \rightarrow Mot_{hom} \rightarrow Mot_{num}$ taking $(X, p, m) \rightarrow (X, p_{hom}, m)$ $\rightarrow (X, p_{num}, m)$. The first functor is not fully faithful, as if $Z \in Z^{i}(X)$ is a cycle, then Z is given by a morphism f: $\mathbb{H}^{\otimes i} \rightarrow M$. If $Z \not\sim ret O$ but $Z \sim_{hom}O$, then this is an example. Explicitly on an elliptic curve E, $Z = \alpha - b$ is not rationally zero, but is algebraically (hence homologically) zero. <u>Def</u> : Let M be a chow motive and Mhom be it's image in Mothom. If $M_{hom} = O$ yet $M \neq O$, we say M is a phantom motive
Thm: If M is a f.d. chow motive, it is not a phantom motive.
<u>Proof</u> : Suppose it was. Then $P_{\text{non}} \sim O$, which implies $P_{\text{num}} \sim O$. Since $M = M_{+} \oplus M_{-}$, $P = P_{+} + P_{-}$ are each numerically trivial, so $P_{\pm}^{n-1} = O \Rightarrow P_{\pm} = O$, hence $M = O$.
Recall that if $H_+(M) = 0$ then $H(Sym^*M) = \Lambda^*H(M)$, hence $H(Sym^*M) = 0$; if $M > dim H(M)$, and if $H(M) = 0$ then $H(\Lambda^*M) = \Lambda^*H_+(M)$, hence $H(\Lambda^*M) = 0$; if $M > dim H(M)$.
<u>Corollary</u> : If M is a f.d. motive, dim M = dim H(M).
<u>Proof</u> : Its enough to see it for M evenly f.d., so set n=dim M and note that since $\Lambda^n M \neq 0$, $H(\Lambda^n M) \neq 0$. Indeed motivic cohomology is defined via the image of the projector, hence nonzoro. The above remarks show dim M 2 dim $H(M) = \dim H_t(M)$, and $H_t(\Lambda^n M) = \Lambda^n H_t(M)$, so dim $H(t(M) \ge \dim M$. This shows equality.
Conjecture (Kimura, O'Sulliven): Every Chow motive is d.d.
<u>Conjecture N(M), N'(M)</u> : The ideal $J_M = \text{Ker}\left(\text{End}_{rat}(M) \longrightarrow \text{End}_{num}(M)\right)$ is nilpotent, resp a nil-ideal (every element is nilpotent).
Thm: Kimura + O'Sullivan => N(M) + no phantom motives
Proof It is a ^V commutative algebra fact that if a nil-ideal has the order of nilpotency unif. bounded, then it is nilpotent. Now let f be an endomorphism of a f.d. motive which is numerically trivial. We aim to show its nilpotent.

				•			as a						
		, k, f <u>+</u> ∘	f ² , mix o	· • fuix	•f _± ^{k;}	i 4	l, +	<i>ا</i> گر≺ ۲	- 1.				
Since f	(hence	f <u>t</u>) ar	e kume	rically	trivial	gives	f <u>+</u> s =	O.	Then	f" = 0) for	n z rs	•
Now re													
s smu s													
Indexed 1													
	get I												
tre sign ?.d. for			appears.	<u> </u>	<i>∖S №</i>	wa	webrein	<u>σ</u> τ	Jannser		This	gives	